A Global Leader

Founded in 1933 with a furnace, belt-drive machines and a Cadillac motor to turn the lathes, Harbison-Fischer has grown into a global leader committed to serving the sub-surface oilfield rod-pump market. Our technically trained, professional staff specializes in:

- solving our customers’ downhole rod-pump problems;
- providing the highest quality products in a timely manner;
- creating value by providing service and expertise that lowers overall lifting costs;
- evaluating each well to recommend the appropriate pump configuration, pump metallurgy and operating parameters.

Located in thirty-five U.S. warehouses, three Canadian warehouses and throughout the oil-producing world, Harbison-Fischer maintains the largest on-hand inventory of rod-pump parts in the industry.

“BEST PUMPS IN THE OIL PATCH”
Pampa Pumps

The ultimate solution for sand-sticking problems

- Long-plunger/short-barrel design handles sand sticking
- Insert- and tubing-pump styles for all applications
- Resists corrosion and abrasion with optional materials

The Pampa Pump is available in three configurations: Pampa Tubing Pump, Pampa Traveling-Barrel Insert Pump and Pampa Stationary-Barrel Insert Pump. All use the concept of a longer-than-normal plunger and shorter-than-normal barrel. The plunger length is selected based on stroke length and the barrel length is selected based on pump depth, just the opposite of a standard API-style pump.

These pumps are all excellent choices for rod-pumping situations where normal-style pumps have a tendency to stick or hang-up due to particulates becoming trapped between the barrel and plunger. Since the plunger is longer than normal, it always strokes out of the barrel and washes clean with production fluid.

Another feature is that the Pampa Plunger is pulling the particulates away from the plunger/barrel interface on the upstroke, rather than running over the particulates and trapping them between the plunger and barrel. The two Pampa Insert Pumps are intended for use in deep wells or wells that require pulling of the pump without pulling the tubing. The Pampa Tubing Pump is recommended for high-production rates.
RESOUNDING SUCCESS

Sand-Pro™ Pump
Sand-Pro™ Pump

The newest tool in the sand box

- Extends pump run times in heavy-sand-production conditions
- Cost effective due to the use of mostly-standard pump components
- Available in abrasion- and corrosion-resistant materials and coatings

The patent-pending Sand-Pro™ Pump utilizes a unique method of separating produced sand from the pressure-sealing, leading edge of the sprayed-metal plunger. By keeping these hard, sand particles separated from the plunger/barrel interface, the surface of the plunger and barrel can seal the pressure longer and thus improve downhole run times.

The Sand-Pro™ Pump uses two plungers connected in tandem to separate the upper-stage, sand-handling plunger from the lower-stage, pressure-sealing plunger. The upper, soft-packed plunger has no pressure across it to force sand into it and thus wear out its soft packing. This extends the wear life of the upper plunger. The lower, metal-sprayed plunger has no sand at its leading edge to wear it out, due to the upper plunger handling the sand. This gives the Sand-Pro™ the best of both worlds for each plunger’s function. The Sand-Pro™ Pump is available in abrasive- and corrosive-resistant materials and coatings.
RUGGED

Three-Tube Pump
Three-Tube Pump

The traditional trash pump for dirty wells

- Sticking-pump problems are eliminated by large clearances between the three pump “tubes”
- Fluid is kept in motion above the hold-down to keep sand from sanding-in the pump
- Available with regular or hardened barrels

The Three-Tube Pump is the time-honored trash pump for efficient operation in extremely abrasive or “dirty” production. The concept of this pump is to have large clearances (.014”) between the plunger and barrels, allowing large quantities of particulates to pass between the plunger and barrels without causing them to stick or hang up.

The Three-Tube Pump is rugged like a stationary-barrel pump but has the top valve of a traveling-barrel pump that closes when the pump is shut down, preventing particulates from settling into the pump and keeping particulates from settling around the pump’s bottom hold-down. The long seal path between the multiple tubes prevents excess slippage.

Texas Stripper Pump (not shown)

A stripper well’s oldest friend (patented by Harbison-Fischer in 1950)

- Pumps shallow, sandy wells without sticking
- Sand stays in motion above the hold-down to minimize the chance of the pump being stuck in the tubing
- Optional materials for corrosive and abrasive conditions available

The Texas Stripper Pump was designed for shallow, sandy wells that are shut down between periods of production, which often causes standard pumps to sand-up and stick. The outer jacket shields the discharge ports and forces the produced fluid to exit at the bottom of the outer jacket, keeping sand in motion around the outside of the pump.
Bottom-Discharge Valve
Bottom-Discharge Valve

Keeps sand in its place; moving up the tubing

- Discharges produced fluid just above the bottom hold-down to help prevent a pump sticking in the tubing
- Prevents corrosion attack on the outside of the pump barrel by eliminating the stagnant-fluid area above the bottom hold-down.

The Bottom-Discharge Valve produces about twenty percent of the fluid through ports just above the standing valve, effectively keeping the fluid between the pump and the tubing in motion and preventing sand from settling above the seating nipple.

Modified API RH Pump for Adhering-Scale Conditions

(not shown)

A standard pump for special conditions

- Pump sticking and subsequent pulling due to adhering scale is eliminated by choosing the lengths of some components differently
- Corrosion- and abrasion-resistant materials are available

This special, heavy-wall (RH or TH) pump is assembled from standard components to aid with the problem of scale that adheres to the inside of the pump barrel. Longer-than-normal extensions and plunger allow the plunger to positively stroke out of the barrel on the upstroke and downstroke, cleaning the plunger and barrel completely of adhering scale.
VERSATILE

Double Valves

Vertical-Discharge Valve-Rod Guide
Double Valves

Invaluable insurance for expensive wells

- Prevents early pulling of a pump when high-pressure sand cutting of the valve seat is a problem

Double Valves are recommended whenever valve seat cutting occurs from high-pressure fluid leaking past particulates trapped on the sealing face between the valve ball and seat. A second valve in series with the primary valve will hold back the hydrostatic pressure whenever particulates are trapped in the primary valve, preventing high-pressure jet cutting of the primary seat.

Vertical-Discharge Valve-Rod Guide

A simple idea to avoid holes in your tubing

- Directs discharged fluid/sand/gas up the tubing instead of at the tubing, reducing the tendency of corrosion/erosion to perforate the tubing
- Standard steel and corrosion-resistant materials available

This special valve-rod guide directs the discharged fluid in an upward direction instead of directly against the inside of the tubing string at the pump discharge.
DEPENDINGABLE

Stuck-Pump
Unseating Device
Sand Seal
Stuck-Pump Unseating Device
(Patent No. 5,005,651)

Avoid expensive wet-string-pulling expenses with free tubing weight

- Uses tubing weight lowered into well to push a stuck insert or tubing pump out of a seating nipple

This patented device is activated by lowering the tubing weight onto the tubing anchor or the bottom of the wellbore until the stuck pump is pushed out of the seating nipple. This device is installed under the seating nipple above the tubing-perforated nipple. After it is actuated, the tubing fluid will drain through the device and allow the pump to be pulled with the rods.

Sand Seal

An automatic solution to prevent sand-stuck pumps

- Avoifs pulling expenses due to bottom hold-down pumps stuck in tubing by sand or other particulates

The Sand Seal installs between the barrel and valve-rod guide at the top of a bottom-hold-down insert pump. It is set when the pump is seated and effectively provides a sand-tight seal between the pump barrel and the tubing. It is automatically released when the sucker-rod pump is pulled.
Harbison-Fischer boasts a corporate philosophy that delivers uncompromised customer service at all times. From our 130-person field staff to our highly knowledgeable engineering staff, we—
support and problem-solve on a daily basis
— offer a level of expertise unmatched in the industry
— continually provide sales support
— teach technical schools in the field; and
— conduct regularly scheduled pump schools at our facility in Crowley, Texas

Quality Control

Our manufacturing equipment, already the most advanced in the industry, allows us to produce the highest-quality parts for our customers. Each product is backed by a quality system that has received both the ISO 9000:2000 and API Q1 certifications and by the expertise of precision machine operators who have an average tenure of over 15 years with Harbison-Fischer.

Finally, to ensure that our customers receive the “BEST PUMPS IN THE OIL PATCH®”, Harbison-Fischer has a fully-equipped metallurgical lab staffed by a degreed metallurgist. This department evaluates our products as raw material and work-in-process and, when needed, performs an analysis on any products sent back from the field. Additionally, the Research and Development department stays on the cutting edge of rod-pump technology by developing products in simulated downhole-operating environments.
Harbison-Fischer is proud to be the industry leader in service, quality and technology for more than seven decades.

The ever-recognizable orange color of Harbison-Fischer products is a registered trademark of the company.

“BEST PUMPS IN THE OIL PATCH™”